数字经济头条 > 智能时代的边缘计算,云计算之后的“新晋网红”?

智能时代的边缘计算,云计算之后的“新晋网红”?

作者:数科邦 发布时间:2018-09-07 1752 0 0

  “计算正从中央走向边缘”、“计算边缘化”……近日来,在大大小小各类有关人工智能的论坛或峰会上,我们或多或少的听见以上言论,其中的关键点只有一个——边缘计算。围绕这个问题,看看这些从业者们给出的解答。

  1.jpg

  边缘计算,一个不是那么“新”的词汇

  关于“边缘计算”的热议是近一两年才慢慢开始的,但它并不是一个“新词汇”。早在2003年的时候,IBM就曾与CDN服务商AKAMAI合作过“边缘计算”。

  根据维基百科的解释,“边缘计算”是一种分散式计算的架构,将应用程序、数据资料与服务的计算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘计算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

  与集中化处理数据的云计算不同,边缘计算讲究的是分布式管理。以往,因为超大规模、高可扩展性、通用性等因素,云计算受到热捧,人们也总是强调要“上云”,将数据的计算、存储等全部搬到云上。相比之下,边缘计算强调的是一种“下沉”,离终端设备更近一点的地方。

  更为通俗地说,“云计算”是高高在上的。当设备端完成数据采集和指令接收,它们需要通过网络走上云端,后者会基于此作出判断,继而将结果再通过网络“告知”设备端。

  相比之下,“边缘计算”则更为接地气。基于边缘计算,设备端不需再将数据等上传至云端,将“计算”本地化,省去以往繁琐的过程。

  边缘计算,云计算之后的“新晋网红”

  在最早的时候,边缘计算的出现就是为了弥补云计算的一些不足,因为后者已经不能满足更多智能需求。具体说来:

  1、海量数据汹涌来袭,但云计算却被“带宽”捆住手脚。如今,越来越多的设备被接入互联网,产生的数量、体量是以往的多倍。原本,这些数据的计算和存储均交由云端处理,即云计算。不过,随着数据的增多,带宽不够的传输通道开始出现“堵车”现象。

  这就如同“多米诺牌效应”——因为带宽受限,数据传输、分析处理、指令反馈等一系列流程都变得缓慢,最终结果就是时间线被拉长,造成高延迟现象。

  2、网络传输依赖性大,隐私安全令人担忧。基于云计算,我们需要把原始数据上传至云端进行处理,然后反馈给设备端,这一过程的实现,需要依赖网络。过程中,一旦有黑客拦截,用户安全隐私的保护就成了一个大问题。另外,若是遇到断网等情况,即使强大如云计算,太过依赖网络传输的它也将面临“巧妇难为无米之炊”的窘境。

  此外,云计算还面临功耗大等更多问题。智能时代渐趋渐近,云计算也不再万能,需要有新技术来弥补缺口。

  此时,边缘计算本地化、边缘化的特性恰恰弥补了这些短板。

  以智能家居场景为例。基于边缘计算,当用户发出指令,相关原始数据不必再上传云端进行处理,具备计算能力的设备端完全能够自行处理,并实时反馈。简单来说,云计算处理的是那些非实时、长周期数据的大数据分析,而边缘计算更适合本地业务的数据实时处理与执行。

  值得注意的是,边缘计算出现之后,诸如网关、自动驾驶汽车、机器人等边缘节点能够在本地实时采集和处理数据,并针对指令给出反馈,这是不是就可以看作是终端计算?

  其实不然,“终端计算”意味着终端要自己负责所有的计算,就像云计算出现之前的计算机,不管是数据的采集、计算、输出和存储,均由计算机在本地设备内一手操作。

  边缘计算,不会取代也离不开云计算

  虽然在某些场景下,边缘计算本身是独立的、不需要云计算介入的。但是,从整体来看,它并不能代替云计算,也离不开云计算。

  未来,边缘计算将与云计算形成一种互补、协同的关系,届时,边缘计算将主要负责那些实时、短周期数据的处理,负责本地业务的实时处理与执行,而云计算将负责非实时、长周期数据的处理。简单来说,边缘计算将注重局部,而云计算关注整体。


评论:

您还可以输入0/300个字
        • 无搜索结果