当前,全球主要国家掀起了新一轮以“信息技术与制造业融合”为共同特征的工业革命,加速发展新一代信息技术,并推动其与全球工业系统的深入融合,以期抢占新一轮产业竞争的制高点。无论是欧美老牌国家制造业的重振,还是中国制造业的转型提升,工业大数据都将发挥不可替代的作用。
工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后、服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称,工业大数据以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。
工业大数据是互联网、大数据和工业产业结合的产物,是中国制造2025、工业互联网、工业4.0等国家战略在企业的落脚点。
工业大数据具备双重数据,即价值属性和产权属性。一方面,通过工业大数据分析等关键技术能够实现设计、工艺、生产、管理、服务等各个环节智能化水平的提升,满足用户定制化需求,提高生产效率并降低生产成本,为企业创造可量化的价值;另一方面,这些数据具有明确的权属关系和资产价值,企业能够决定数据的具体使用方式和边界,数据产权属性明显。工业大数据的价值属性实质上是基于工业大数据采集、存储、分析等关键技术,对工业生产、运维、服务过程中数据实现价值的提升或变现;工业大数据的产权属性则偏重于通过管理机制和管理方法帮助工业企业明晰数据资产目录与数据资源分布,确定所有权边界,为其价值的深入挖掘提供支撑。
工业是国民经济的基础和支柱,也是一国经济实力和竞争力的重要标志。近年来,工业大数据作为我国“智能制造”和“工业互联网”的关键技术支撑以及两化融合的重要基础备受关注。党中央、国务院出台了一系列“大数据”“两化融合”“互联网与制造业融合”等综合性政策与指示,其中对工业大数据发展提出了明确的要求,全面指导我国工业大数据技术发展、产业应用及其标准化进程。
从供给侧看,工业大数据供给侧能力持续提升,涌现出一批专精特新企业,成为推动我国工业大数据发展的中坚力量。一是由传统工业制造企业数字化、软件化、平台化发展,出现了一批具有较强数据汇聚能力的衍生型企业,如航天云网、树根互联等;二是软件企业向工业领域渗透,出现的技术型企业,如昆仑智汇、东方国信等企业在工业数据建模、分析处理等领域不断突破核心技术;三是互联网企业积极进入工业领域,如阿里推出“ET工业大脑”等产品和服务,腾讯推出工业互联网“木屋云”平台。
从需求侧看,随着智能制造、工业互联网等国家战略的逐一推进,个性化定制、网络化延伸以及智能化设计、生产、服务等新模式不断出现,对于工业大数据技术、产品、平台的需求不断增大,为工业大数据提供了充足的应用场景。
以数据为关键要素驱动工业转型升级,不仅成为宏观层面的行业共识,也正在微观层面为企业带来实际收益。然而,工业大数据的发展,还面临数据资源不丰富、数据管理滞后、孤岛普遍存在以及应用深度不足等挑战。
为此,需要在企业层面夯实数据基础,抓住技术创新机遇,在行业层面建立数据互操作与流通的标准与规则。其次,工业大数据建设,首先是一种思维变革,改变以前以要素竞争为主的工业生产模式,进入到数据和创新竞争为主的新生产时代。正如清华大学王建民教授所言“工业大数据不存在交钥匙工程”,因此,需要企业领导人、管理层、员工和相关人都投身其中,各司其职,才能在这数据化时代下,寻找到机遇大数据的解决方案,并有所成。
2020-02-15 11126
2018-01-03 10313
2021-03-18 7564
2018-06-01 6567
2019-06-22 6017
2019-05-03 5752